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SUMMARY 
We present here a numerical method for solving the free surface flow around a ship at forward speed in 
calm water. The fluid is assumed to be Newtonian and the Reynolds-averaged Navie-Stokes equations 
are solved by a finite difference method. Modelization of turbulence is achieved by the algebraic model 
proposed by Baldwin and Lomax. Fully non-linear free surface conditions are satisfied in the model and 
a method to avoid the incompatibility between free surface conditions and no-slip conditions at the 
waterline is proposed. Numerical results obtained for a Wigley hull are compared with experimental results. 
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1. INTRODUCTION 

The standard approach to the numerical study of incompressible flow around the hull of a boat 
may be divided into two distinct methods; either the irrotational perfect fluid hypothesis is 
chosen and the problem is solved by a panel method with linear or non-linear free surface 
conditions”’ or  the fluid viscosity is taken into account and the Reynolds-averaged Navier- 
Stokes equations are solved with or without simplification (Navier-Stokes parabolized equa- 
tions, boundary layer equations) for the double model only (without any free surface condi- 
tion).’-’ 

In the first method the wave elevation around the hull with forward speed and therefore its 
wave resitance can be calculated in accordance with the solution of the perfect fluid problem, 
which varies according to the Froude number only. The flow separation at the stem of the boat, 
the velocity profile in the boundary layer and frictional and form resistances cannot be obtained 
by this theory and Seem to be particular to the second method. However, in the second method 
the wave elevation and consequently the wave resistance cannot be obtained. 

All the components of the ship resistance can be obtained by using two computer codes, based 
on both theories previously mentioned, with the hypothesis of uncoupling gravity forces and 
viscous forces, which is not easily controllable. 

The success of this method is largely due to the validity of Froude’s hypothesis, which supposes 
that for realistic scales and for boats with smooth shapes the problem of wave resistance is not 
quite coupled with the viscous problem. Thus it seems possible to consider as a first approxima- 
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tion that the wave resistance essentially varies according to the Froude number and the frictional 
resistance according to the Reynolds number. 

This approximation fails as soon as viscous effects appear near the free surface (thickening of 
the boundary layer at  the stern, separation, etc.). In this case an important dependence of the 
wave elevation on the Reynolds number and of the velocity profile in the boundary layer on 
the Froude number is to be noted. 

The first-order boundary layer equations present an attractive option for this problem, because 
viscous effects are naturally coupled with the perfect fluid. It can be shown that linear free surface 
conditions in the pressure field calculation (perfect fluid) are consistent with the boundary layer 
hypothesis. A weak coupling with transpiration velocities is an interesting alternative in order 
to take into account the boundary layer effects in the free surface perfect fluid calculation. 
Unfortunately, obtaining convergence of the process for low Reynolds numbers remains difficult 
and we come up against problems that are particular to the weak coupling formulation: the 
impossibility of calculating flow separation and the indetermination of the results concerning 
local parameters for concave geometry.6 

For all these reasons numerical solutions of the full Navier-Stokes equations with free surface 
conditions appear today.’ 

A finite difference formulation to solve the Reynolds-averaged Navier-Stokes equations for 
the calculation of three-dimensional turbulent viscous incompressible flow past a ship hull with 
forward speed in the presence of a free surface is presented in this paper. 

Writing the equations in a Cartesian system’ (e.g. the Tummac formulation) reveals some 
problems in taking into account no-slip conditions on the body and viscous free surface boundary 
conditions: sufficient refinement of the mesh in order to obtain a good description of the 
velocity profile in the boundary layer, especially for high Reynolds numbers, is not possible. In 
consequence, the integration of the stress on the hull grid is very imprecise and the prediction 
of resistance is poor. In this paper the unsteady Navier-Stokes equations written in a conforming 
curvilinear grid system will be used so that the body and the free surface will describe co-ordinate 
surfaces at  each time step.’ 

The independent unknowns are the three Cartesian components of physical velocity, pressure 
and wave elevation on the free surface. A partial transformation of the equations will be used. 

Closure of the equations is realized by an algebraic turbulence model (Baldwin-Lomax or 
Cebeci-Smith) without a wall function. By this approach the real performances of the model 
can be tested, but this requires a very fine meshing around the body and a preconditioning of 
linear systems. 

Fully viscous free surface conditions are written for the real position of the boundary. The 
kinematic condition is used for the calculation of the new free surface elevation at  the end of 
each iteration. The normal dynamic condition is taken into account as a Dirichlet condition on 
the pressure and both tangential dynamic conditions are taken into account as Neumann 
conditions on velocities. Unfortunately, free surface conditions are inconsistent with boundary 
conditions on the no-slip conditions inhibit numerically the motion of the free surface 
along the hull and induce too important stress in the dynamic condition. A relaxation 
method of the free surface boundary conditions near the body is used to solve the problem 
numerically. 

After the presentation of the flow equations a general method of numerical resolution 
is proposed for the conforming griding, for the discretization of the transport equation 
of the mean momentum, for the discretization of the continuity equation, for the resolution of 
linear systems and the preconditioning and for the discretization of the free surface boundary 
conditions. 
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2. EQUATIONS 

2.1. Primitive form 

The Navier-Stokes equations are written in the so-called Galilean orthogonal system 
( X I ,  xz ,  x'). The independent unknowns are the Cartesian components of the mean physical 
velocity, (ul, u2, u3), and the mean pressure P. Gravity forces, which are needed for calculation 
with a free surface, are taken into account by the change of variable p = P + pgx'. A Newtonian 
closure for Reynolds stresses using a turbulent viscosity v, and the kinetic energy of turbulence, 
k ,  is employed. The fluid is assumed to be incompressible. 

2.2. Computational box 

The physical domain in which the flow is calculated is limited by the unstream input plane, 
the downstream output plane, the hull, its symmetry plane and the free surface. A transformation 
of the boundary conditions on the hull and the free surface is i n d u d  by using curvilinear 
co-ordinates. The physical domain is transformed into a computational box in which the free 
surfaces and the hull are planes. The directions el ,  e2 and 6' are shown in Figure 1. 

The partial transformation consists of using Cartesian components of the velocity which vary 
according to the &co-ordinates. The total transformation, which would require the calculation 
of third-order metric coefficients (Christoffel coefficients), will not be used. The Navier-Stokes 
equations with partial transformation are 

The particularity of a calculation with free surface boundary conditions is the evolution of 
the physical space while the calculation space is fixed. The metric which is applicable to each 
iteration for the transformation consists of the Jacobian J ,  the covariant basis a,, the oriented 

Figure 1 
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area vectors g, the contravariant metric tensor gi', the grid control parameters f' and the 
displacement velocity of the mesh, 0': 

ax/ 
ad ' ai, = - J = det(a,,), b' = a, A ak(i, j, k) cyclic, 

(3) 

2.3. Turbulence model 

When calculating realistic flows around a real ship, the Reynolds numbers are about 10" or 
lo9, and lo6 or lo7 for a model: therefore turbulence equations have to be used. The turbulent 
viscosity, introduced by the Newtonian closure which links the Reynolds stress to the mean 
velocity field, is expressed by a turbulence model and the influence of the turbulent kinetic energy 
(k) is included in the pressure term (p + $k). The calculation has been done with an algebraic 
model based on a mixing length formulation adapted for Navier-Stokes computation by Baldwin 
and Lomax." This model is used with a damping function of Van Driest (FvJ but without a 
wall function. The normal distance (d) from the grid point to the body is obtained by calculating 
the curvilinear abscissa along the &'-line of the mesh. In the wake we consider the distance from 
the grid point to the symmetry plane (y = 0) and the damping function of Van Driest is not used. 

The Degani-Schiff correction is satisfactory for the double model, but the free surface 
conditions induce irregularities in the calculation of the frontier of external and internal domains 
and subsequently in the calculation of the turbulent viscosity. This numerical problem is avoided 
by restricting the search of the froniter, i.e. the search of the maximum of the function doFvd 
along the &'-line, to the boundary layer instead of considering the whole profile which extends 
from the hull to the exterior boundary of the calculation domain. In this model free surface 
effects are not modelized and o represents the modulus of the rotation of the flow. 

2.4. The free surface bowrdary conditwns 

The free surface boundary conditions consist of one kinematic condition and three dynamic 
conditions. 

The kinematic condition ensures that the fluid particles of the free surface stay on the free 
surface at any time. If h is the free surface elevation, this condition is written as Dh/Dt = u3 or 
in Cartesian co-ordinates as 

ah ah  ah  
- + u1 - + u2 - = u3. 
at ax ay (4) 

The dynamic conditions represent the continuity of stress on the free surface. In the perfect 
fluid approximation only the continuity of the normal component, which is the pressure, is 
assumed, but in a viscous fluid the tangential stress has to be taken into account. The continuity 
of normal stress is then no longer the continuity of pressure, and viscous terms and turbulent 
terms must be used. 
The stress tensor is 



FREE SURFACE FLOW AROUND A SHIP 

The ith component of the stress on the free surface is 

Therefore the normal stress component on the free surface is obtained as 

and the normal dynamic condition in Cartesian co-ordinates is 

325 

(6) 

where y is the surface tension coefficient and rl and rs are the two principal curvature radii of 
the free surface. 

Taking into account a,b3 = 0 (a = 1 or 2) on the free surface, the continuity of tangential 
stress in Cartesian co-ordinates is written as 

A partial transformation whereby Cartesian co-ordinate equations are transformed into 
curvilinear co-ordinates equations in the computational space is applied to the previous 
equations. The kinematic, normal dynamic and tangential dynamic conditions are respectively 

($ + f g(u' - u:, - - u3 = 0, 
dd ah> 

aui 

8 8  
(b;bjad + b/b:amj) - = 0. 

3. NUMERICAL RESOLUTION 

3.1. Meshing 

The convergence to a steady state is obtained by a time step method. At the end of each time 
step a new free surface is computed and a new mesh is fitted to the physical space. The meshing 
method takes a lot of CPU time if it is used at each time step. A numerically faster meshing 
scheme is proposed here. 

An initial structured monoblock mesh is computed by a method of transfinite interpolation.12 
This mesh is fitted on the upstream and downstream planes and on the body which has been 
first discretid above the assumed final location of the free surface. 

The numerical method has been developed for general non-orthogonal grids, but an orthogo- 
nalization of the mesh ensures a better accuracy in the calculation of the metric coefficients, so 
the mesh is orthogonalid as far as possible by adding conditions on the direction of the grid 
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lines of the boundaries of the domain. The concentration of the grid around the body can be 
adapted by a control function in order to have a precise computation of the velocity in the 
boundary layer (the mesh is refined on the bow of the boat because of the boundary layer 
thinness). Finally the mesh is smoothed in order to restrain the propagation of the discontinuity 
of the first derivative at the intersection of hull and symmetry plane along grid lines (the 
transfinite interpolation method expands the drawback of the mesh). 

This initial mesh is used for all re-gridding operations at each time step. The method is the 
following. The initial mesh has to be cut by the free surface while maintaining the structural 
character of the mesh and the number of grid lines in each direction (2, c2, ~9). Each grid line 
which starts at the free surface (8' grid line) is considered independently and the points are 
distributed according to the new free surface elevation. On each line the same curvilinear abscissa 
is preserved and the refinement of the mesh is kept. 

The advantage of this method is its low CPU time. In return the orthogonality of the mesh 
is lost. 

The independent unknowns (velocities ui, pressure p and free surface elevation h) are located 
at the nodes of the grid (node-centred disposition). 

3.2. Discretization 

3.2.1. Continuity equation. The discretization of the continuity equation uses nine first-order 
derivatives on velocities (each component of the velocities in the three directions of the mesh). 
For numerical calculation a classical centred scheme with seven nodes can be used. This method 
is accurate to second order and does not require interpolation for a node-centred disposition, 
but is sensitive to the problem of odd and even uncoupling. Therefore a firstsrder-accurate 
non-centred scheme with four points is preferred. This scheme, being used with an opposite 
non-centred discretization of the pressure gradient in the three directions, gives a discretization 
of the pressure equation with 13 points, which produces a better conditioning of the pressure 
matrix. 

3.2.2. Momentum equation. Using the change of variable Ei+ = ei/(gii)o'5, the transport equa- 
tion for the mean momentum is written in the linearized form 

@ei*tir + @++ + = 2A4+ + 2B@p + 2C@c1. + D@, + So, (1 1) 

where @ is one of the three components of the mean velocity and the convection terms A, B 
and C and source terms S, are calculated at the previous time step. The discretization is made 
only on the first- and secondsrder derivative terms in ti*. In order to limit the numerical 
diffusion and to obtain continuous discretization coefficients with convection velocities, analyt- 
ical discretization schemes have been tested, being considered as more accurate than an upwind 
finite difference scheme. 

A bidimensional finite analytic scheme (Figure 2) was first tried, associated with an uni- 
exponential scheme in the third direction. This method is based on the following decomposition 
of the transport equation: 

-@sl*el* - 2C@,I* + m, + s, = g. (12) 

The discretization of the first equation is achieved by the finite analytic method carried 
out by Chen and Chen:''*'4 a nine-node bidimensional grid is used and it is assumed 
that the boundary conditions on the four sides of the grid are given by linear combinations 
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multiexponentinl 
1- scheme 

Figure 2 

of linear and exponential functions. If g is assumed to be constant on the grid, the analytical 
solution is 

If S,  is assumed to be constant on each grid net, the second equation can be solved like a 
and on a 

(14) 

If a noncentred first-order-accurate discretization of unsteady terms is used, the association 
of the two equations produces a discretization of the transport equation of the mean momentum 
on an 1 l-node spatial grid and two-node temporal grid: 

first-order linear differential equation with constant coefficient. The unknown is 
monodimensional grid net the following equation is obtained: 

(c, + Cd)@p - c,@,, - CdOd = g - s@ - D@t. 

Nevertheless, this method of discretization requires a lot of CPU time because of the 
calculation of finite analytic scheme coefficients. Calculation of an infinite series with often poor 
numerical convergence and imperfectly controlled asymptotic developments is needed. One 
should also note an asymmetry of the discretization which develops a preferential direction of 
the mesh. 

A multiexponential scheme' '*16 (Figure 2) based on a symmetric decomposition by computa- 
tional space dimension of the transport equation can also be used. The multidimensional 
operator of the partial derivative system is represented by a set of differential operators. In each 
direction a linear differential equation is solved and the following is obtained: 

1 
@pp + 2AiU)e + gi = 0 * @ep - 2AiOd. = - ( - Q P  + + Ci+@i+). (16) 

CPi 

The discrete equation is 
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All the coefficients obtained by this method, like the finite analytic coefficients, are positive 
and will induce a good conditioning of the velocity matrix. The advantages of this seven-point 
scheme are its simplicity and speed of calculation of coefficients for a weak memory storage. 
Nevertheless, the numerical diffusion with this scheme is still too important, in particular for 
high grid Reynolds numbers. 

In order to palliate this drawback, the multiexponential scheme can be combined with a 
second-order-accurate centred finite difference scheme. We continuously switch between the two 
methods for a grid Reynolds number &terms) of about two. All the discretization d c i e n t s  
are calculated according to C = (1 - f)C,,, + fC,., with f = 0 1  + 0.9 exp[( -AJl*32)']. 

This last scheme is used for all the numerical calculations. 

3.3. Pressure-velocity coupling 

At each time step two linear systems have to be solved simultaneously, namely a linear system 
coming from the transport equation of momentum and a linear system resulting from mass 
conservation: 

(E - A)U + G P  = f (Sl), DU = g (S2). (18) 

U and P are the velocity and pressure vectors respectively at the nodes of the mesh. The velocity 
matrix consists of a purely diagonal matrix E and a zero diagonal matrix A. G and D are discrete 
forms of gradient and divergence operator respectively. Source terms and boundary conditions 
are gathered in the f- and g-vectors. 

If the pressure field was previously known, the velocity field could be determined through the 
solution of system (Sl). Unfortunately, the pressure field is unknown and the equation necessary 
to determine it is obtained by a linear combination of the two systems (Sl) and (S2): 

D(E - A ) -  '(f - GP) = 9. (19) 

At present the problem stems from the impossibility of solving this system of equations 
numerically because of an impossibility of storing the matrix D(E - A)- 'G and therefore of 
inverting it for the considered mesh (around 10' nodes): D(E - A)- 'G is a full matrix and needs 
at least 800 Gbyte physical memory for its storage, which is not reasonable. The principle 
adopted in the iterative resolution algorithm SIMPLER is based on the use of E-' as the 
approximate inverse of E - A. The discrete pressure equation becomes 

(DE-'G)P = DE-' (AU + f )  - g. (20) 

The Patankar SIMPLER algorithm3 used to solve the continuity and momentum transport 
equations is the following. 

1. Calculate the purely advective velocity field: U* = E-'(AUk-' + f). 
2. Calculate the pressure field at the previous time: P-' = (DE-'G)-'(DLI* - 9). 
3. Solve the momentum transport equation: U** = (E - A ) - ' ( f  - GP-'). 

The divergence of the velocity field U** is not zero and must be corrected by the following two 
steps. 

4. Calculate the pressure correction: P' = (DE-'G)- ' (DU** - 9). 
5. Calculate the corrected new velocity field: U k  = U** - E-'GP' .  
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3.4. Solution of linear systems 

The solution of the SIMPLER algorithm imposes the inversion of three linear systems: one 
on the velocity matrix E - A (step 3)  and two on the pressure and pressure correction matrix 
DE-'G (steps 2 and 4). These matrices are quite sparse and the position of non-zero values can 
be easily located by using a structured mesh. An iterative method is used to invert these systems. 

The inversion of the velocity system is made easier because the analytical schemes (finite 
analytic or multiexponential) or the finite difference upwind scheme supply positive coefficients 
which give a digonally dominant and well-conditioned velocity matrix. 

The linear systems studied here are not symmetric generally, so an ordinary conjugate gradient 
algorithm should not be used. The normal equation method, which consists of restoring the 
symmetry of the system by left multiplying by the transposed matrix, is a solution to this problem, 
especially because the new matrix of the system is necessarily positive, ensuring the convergence 
of the method. Unfortunately, the condition number of the new system becomes the square of 
the initial system and the rate of convergence of the process is slowed down. Therefore, in 
order to invert the matrix, a biconjugate gradient method will be used, which will preserve the 
condition number of the system though it will double the size of the matrix. The convergence 
of this process is not mathematically proved (the new matrix is not always positive), but until 
now we have never met a velocity matrix for which the biconjugate gradient method would 
diverge. 

The linear systems for pressure and pressure correction are less easily solved. In fact, 
the diagonal dominance of the matrix cannot be secured, as in the velocity system, and the 
refined grid, which is necessary for a good description of the velocity profile in the boundary 
layer without using a wall function, increases considerably the condition number of the 
system. 

The paradox is then the following: the velocity on the boundary layer changes very quickly 
and is easily computed, but the pressure varies slowly, making it diffcult to calculate. 

With the free surface boundary condition the convergence is obtained with more difficulty, 
because the condition number increases gradually during the time steps, together with the 
displacement of the free surface. 

Thus the number of iterations required by a biconjugate gradient method in order to obtain 
a good solution of the system increases and sometimes the method diverges. Consequently, a 
preconditioning of the matrix D E - I G  is essential, not only to reduce the cost of CPU time but 
also to create the convergence of the iterative method. The preconditioning method consists of 
left multiplying the system Ax = b by a matrix M - I  in order to decrease the condition number 
of the new matrix of the system ( M - I A )  with respect to that of A. Thus we have to solve the 
following new system: M - 'Ax = M - 'b. 

The biconjugate gradient method preconditioned by a matrix M-'  consists of carrying out 
the following operations up to rj,Jro < E :  

ro = b - Axo, io = b - ATx0, po = zo = M-'ro ,  Po = I .  = M-Tro, 

for j = 1 to j,, 

Qj = (f,, Z,>/(P,' AP,), x j+  1 = xj - ajpj, 

ri+ = rj - a&j, ij+ = i, - ajATpj, 

zj+ 1 = M-'rj+ 1, zj+ 1 = MTij+ 1, 

B j  = ( f j +  1 -  z j+ , > / < f j ,  z j>,  P j +  1 = B,P, + zj+ 1 9  Pj+i  = B j P j  + F j +  1, 
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If M = I, (identity matrix), it is clear that there is no preconditioning. M = A is the more 
effective theoretical preconditioning, but in this case A-'  is still to be calculated. The problem 
consists of determining a matrix M which is a good and easily invertible approximation of A. 
Consequently, M is written as a classical LU decomposition which copies the A-structure. The 
decomposition is written in the form 

M = LCJ, L = ( I  + A)A-', U = (U + A), (21) 

where 1 and u are the strict lower and strict upper decompositions of A respectively and A is a 
diagonal matrix such that diag(M) = diag(LU) = (2 - a)diag(A) defined by the following re- 
currence: 

The matrix M = LU is easily invertible by a standard method (Mx = y o  Lz = y and U x  = z). 
The only remaining problem of this recurrent method is that it is not vectorizable in this respect. 
Various algorithms are used to vectorize the inversion of a triangular system, e.g. the decomposi- 
tion in Neumann series. Nevertheless, the vector performance of the computer has to be 
considered before using these algorithms. 

3.5. Discretization of free surface boundary conditions 

3.5.1. Kinematic condition. Taking into account that h is the free surface elevation, varying 
only according to the parameters t, E~ and E ~ ,  we can write the kinematic condition in the form 

ah ah ah 
- + A' - + ~ 2 -  - ,,3 = o, at a E l  a E 2  

1 1 1 
J J J 

A' = - b:(u' - u:) + - bi(u2 - u:) + - b;(u3 - u:), 

1 1 1 1 
J J J J 

A2  = - b:(u' - u:) + - b$(u2 - ~ f )  + - b$(u2 - u:) + - b3(u3 - u:). 

The new position of the free surface at the end of each iteration can be computed under this 
condition. After the discretization of this equation the new free surface elevation is obtained by 
solving a linear system. In order to avoid system inversion and to reduce CPU time, a 
non-centred discretization of the spatial derivative terms is used. This method renders the free 
surface elevation in the form of an explicit recurrent equation, preserving the implicit characteris- 
tic of the discretization. It is essential to use an implicit scheme for the discretization of the 
kinetimatic condition when a very fine mesh is used because of the very small time step enforced 
near the body by the stability criterion of the explicit discretization. 

The velocities on the free surface (useful for A'-term calculation) are computed using the two 
dynamic conditions for u' and u2 and solving the continuity equation for u3. 

The ah/&' derivatives are discretized with Dawson's upstream four-point scheme in order to 
reduce the numerical damping introduced by a two-node discretization. 

The discrete free surface kinematic condition is 
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i.e. 

where the C,-terms are the Dawson scheme coefficients with a constant step. The index k refers 
to the time step and the indices i and j refer to the E ' -  and &'-direction respectively. The 
C,-coefficients used are the following: C, = 3, C, = -5, C2 = 1, C, = -:. To solve the 
above-mentioned equation, initial conditions at  t = 0 and boundaries conditions for E' = 
and E~ = tiax have to be used: 

htl = 0 and &,,,in, hf.,,, = 0 for all (i,J. 

It is important to emphasize the numerical difficulties which have been met around the 
intersection of the free surface with the hull. On the hull the velocity components verify the 
no-slip condition u' = u2 = u3 = 0 and the contravariant components of the velocity deforma- 
tion of the calculation space are equal to zero; therefore the components A' and At  are equal 
to zero. There is only one solution to prevent the free surface kinemetic boundary condition 
from degenerating to = 0 (in this case the free surface do not go up along the hull). This 
solution is that becomes infinite so that A2ah/de2 remains finite and not equal to zero. 
This mathematical singularity cannot be treated numerically, so the free surface elevation on 
the hull is computed by ah/ds2 = 0. 

3.5.2. Dynamic condition. The normal dynamic free surface condition is taken into account by 
a Dirichlet condition on the pressure, all the terms of the right-hand side being computed at 
the previous time step. First-order derivatives on the velocities are expressed with a centred 
finite difference scheme in directions c1 and z2 and with a non-centred scheme in direction c3. 

The surface tension term is generally introduced into the computation in order to regularize 
numerically the free surface elevation. Nevertheless, the mesh refinement in the boundary layer 
which is used here gives a very unstable calculation of the radius of curvature and induces 
irregularities on the calculation of the pressure up to the divergence, so the surface tension term 
is neglected in the calculation. 

Moreover, the normal viscous stress on the free surface may be very important in the boundary 
layer, and when this term is taken into account in the dynamic condition, the calculation of the 
pressure is not accurate enough for a good convergence. Therefore the dynamic condition is 
continuously relaxed in the boundary layer so that the normal dynamic condition tends towards 
the perfect fluid condition on the hull (Re + 00) and the normal viscous stress is taken into 
account exactly outside the boundary layer. 

The tangential free surface dynamic conditions are introduced in the form of two Neumann 
conditions on the velocities u1 and u2. The developed form of the conditions is 
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K i , L  = b:b:ali + b:b!a,, + b$blali + b$b:a,, + b;b:ali + b$b:a13, 

Li,k = b:b:a2, + btbja,, + b$b:a2, + b$b:a,, + b';b:aZi + bLjb?aZ3, (27) 
' i , k  = K i , J K 1 , 3 ,  G j , k  = Li .JL2 .3*  

It is noted that au1/as3 and auz/ae3 can be expressed independently with one of the two 
conditions mentioned above; nevertheless, the previous test shows a better convergence of the 
code when au'fae3 is expressed by the continuity of tangential stress in the direction ci. 

The meshes that have been used are too coarse to show a boundary layer under the free 
surface. In order to capture a velocity profile under the free surface, the grid at the free surface 
has to be refined with the same concentration as on the hull. This will multiply excessively the 
node number and has not been considered up to now. 

A new numerical difficulty appears when both no-slip conditions and free surface conditions 
are taken into account. Indeed, at the intersection with the free surface aui/ae3 = 0 and 
au*/as' = 0 for i = 1, 2, 3 are given by the no-slip conditions, and when these relations are 
inserted in the tangential dynamic conditions, the following are obtained: 

Geomety  of the body, a l l c u l a h  data, initial m h .  
initialization d t h e  velocity and free surface I 1 

I 
Calculation of velocity field and p ~ ~ . ~ u r e  ficld 
(SIMPLER) 

I I 
~~ 

I Calculation dnew free surface elevation 

End of itcralions 

Figure 3 
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The second member of these equations contains the derivatives of velocities in the e2-direction, 
which is normal at the hull. When these terms are taken into account, an inexorable divergence 
of the computer code is obtained. The numerical solution consists of suppressing derivatives in 
the E2direction around the hull at a distance of the magnitude of the boundary layer thickness. 

3.6. Organization of computer code 

shown in Figure 3. 
The computer code ELISA based on the above theory is organized according to the chart 

4. RESULTS FOR A WIGLEY HULL 

The calculation was made around a Wigley hull fixed in heave and pitch. An H-mesh topology 
has been used on the free surface and a C-mesh topology in the e3-direction. The grid used has 
41 nodes in the &'direction, 21 in the c3-direction and 91 in the &'direction (15 before the hull, 
26 behind the hull and 50 along the hull). The whole volume mesh contains 80,000 nodes. The 
physical space stretches out for one length of the boat above the hull, two lengths behind, one 
length on the side and half a length under the hull. The first calculation point in the boundary 
layer is located at s/l = 0.00001 at the bow and s/l = OOOOO5 at the stern to ensure approximately 
y+ = 3 for the non-dimensional distance to the body (the refinement of the mesh is varying 
continuously from the bow to the stem). 

The &'-direction is the main direction of the flow, the &'direction is normal at the hull surface 
and the  direction is parallel to the hull sections from the free surface to the symmetry plane 
(E' = 0 is the surface which contains the hull, E' = 0 is the free surface equation at each time). 

A partial view of the mesh on the bow is shown on Figure *a). Figure 4(b) shows the 
deformation of the mesh of the free surface at the end of the calculation. 

The characteristic establishment time of the profile velocity in the boundary layer on the one 
hand and of the free surface position on the other hand are very different (the total process 
convergence being ruled by the convergence of the free surface). Thus a constant and uniform 
time step is used and the iteration is camad until the convergence of the free surface. 

A non-dimensional constant time step has been used: T = u,t/l = 001. Iterations have been 
made till T = 5 for high Froude numbers (Fn > 0.35) and till T = 10 for low Froude numbers 
(0.22 < Fn < 0.39, i.e. 500 or lo00 iterations in 10 or 20 h CPU time on a CRAY2 mono- 
processor. 

Starting the calculation with the final speed of the boat is physically the same as suddenly 
introducing a hull in a water-circulating channel. A shock is created on the free surface and this 
requires an important sub-relaxation of the velocity field and free surface elevation to converge. 
In order to obtain at each time step a physical comparison, the calculation simulates a uniform 
acceleration to reach the speed wanted. 

The unsteady speed of the boat is computed according to u/u, = min(1, aT). Therefore we 
have a first period of time with a constant non-dimensional acceleration u and then a second 
period of time with a constant nondimensional speed u/u, equal to unity. Acceleration terms 
for the moving system in rectilinear translation are taken into account in the source terms S,. 
The convergence and the suppression of the relaxation coefficients on the free surface elevation 
and on velocities are ensured by this technique, so the results of each iteration correspond to a 
physical unsteady state. 

Figure 5 shows a convergence of about third order on velocity, pressure, free surface elevation 
and pressure integration force. The remaining terms are calculated according to 
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Figure 4. 

Figure 6 shows the free surface elevation along the hull (located between x/ l  = -03 and 
x/l  = 0.5). Calculations are in good agreement with experimental values at  all Froude numbers 
in spite of a light numerical damping (especially for the lower Froude number of 0 2 5 )  which 
restricts the magnitude of free surface oscillations. Using a finer grid mesh would probably 
improve the results, in particular the magnitude of the first crest. Viscous effects are visible 
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Figure 5. Convergence of (a) velocity, (b) pressure, (c) free surface elevation and (d) pressure integration force 

especially on the stem crest; for perfect fluid calculations its amplitude is nearly the same as the 
bow crest, but in real flows it decreases by about 30%. 

Figures 7 and 8 show the calculated and measured” velocity profiles in sections x l l  = 0 
and 0 4 5  respectively. Results for x/l = 0 are in accordance with experimental results along 
the whole section. On the stern of the boat (x/ l= 045)  the velocity profiles near the free 
surface are no longer in agreement with experiments. The main difference is that the experimental 
velocity profiles in the presence of the free surface are very different from the experimental 
velocity profile for a double-model configuration, but for now all the calculations that have 
been carried out with the boundary layer approximation or with the Navier-Stokes equations 
show very little difference between the free surface and double-model calculations for the velocity 
profile (Figure 8). It is noted that the calculations carried out by Hino’’ (NavierStokes) 
and Stern” (boundary layer) give the same conclusions. We suggest two reasons for this 
phenomenon. 
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Pn-0.250, Re = 3.OdM5 

-1.0 -0.7s 4.5 4.25 0.0 0.73 0.5 0.7s 1.0 

x/l 
Figure 6. Free surface elevation along the Wigley hull: -, ELISA calculation; x , Stem calculation; +, Hino calculation; 

0, experiments 
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Figure 7. Velocity profiles at x / l =  0, Re = 4.5 x lo6 and Fn = 0316: -, ELISA calculation; 0, Ali experiments 
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Figure 8. Velocity profiles at x / /  = 045 and Re = 4.5 x lo6: -, ELISA calculation ( F A  = 0316); 0, Ali experiments 
( F n  = @316); +, ELISA calculation (Fn - 0); 0. Sarda experiments ( F n  = 0, x// = 0) 
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1. Very important modifications in the turbulence characteristics which are not modelized 
are due to the presence of the free surface." A decrease in the characteristic length of the 
turbulence and therefore in the turbulent viscosity is observed experimentally and very 
locally on the free surface. A simplified formulation has been introduced in the Baldwin-Lo- 
max model which consists of calculating the characteristic length no longer as the distance 
to the wall but as the minimum distance to the wall and to the free surface.lg Calculations 
made with this new method indicate that the turbulent viscosity is modified only on a very 
thin layer under the free surface. This is not enough to explain entirely the differences 
between experiments and computations. 

2. The second hypothesis is related to the implementation of dynamic conditions on the free 
surface and particularly tangential dynamic conditions which are inconsistent, in the form 
of Neumann conditions, with the no-slip condition. For this reason the relaxation of the 
dynamic conditions in the boundary layer is made just where their influence is important. 
A more exact representation of dynamic free surface boundary conditions would probably 
improve the calculation of velocity profiles near the free surface. 

Plate l(a) is a three-dimensional colour representation of the initial mesh of the boat and part 
of the free surface grid. The scalar which is represented on the free surface is the elevation of 
the free surface, h. We can see in this figure, first, that the grid is fitted to the body and to the 
unsteady free surface: the hump on the bow of the boat and the following hollow along the hull 
can be distinctly noticed (the hump on the bow of the boat and the following hollow along the 
hull can be distinctly noticed (the hump is in red and the hollow in blue). The interaction of the 
free surface with the boundary layer is shown by a smaller hump on the stern than on the bow. 
This phenomenon is at the origin of the form resistance which is unreachable by perfect fluid 
calculation. In Plate l(a) the free surface streamlines can be Seen in white (at the convergence 
the free surface is a stream surface). 

Plate l(b) shows the distribution of the velocity modulus on the free surface. Free sur- 
face effects can be observed: the decrease in velocity on the hump and the increase in 
velocity on the hollow of the free surface. Thew effects can also be found in a perfect fluid, 
since in this case the free surface elevation is proportional to the square of the difference 
between the modulus of the velocity and the upstream infinite velocity. Viscous effects such 
as the expansion of the boundary layer are manifested by a decrease in velocity along the 
hull or a softening of free surface oscillations in the wake. Nevertheless, the excessive mesh 
stretching in this domain may also be a cause of this softening. More accurate calculation 
of the free surface elevation downstream of the hull would require a very fine grid in the 
&'-direction (i.e. along the hull), but such a grid would at present increase the CPU time 
excessively. 

All the calculations are realized in unsteady mode and the evolution of the resistance of the 
boat versus time has been studied. 

The total resistance Rt which is computed by the resolution of the free surface Navier-Stokes 
equation is fundamentally divided into two distinct parts: the tangential frictional resistance R/ 
which originates from the Newtonian modelization of the viscous stress tensor, and normal 
pressure forces which result from the total pressure integration on the hull, Rpt. This last 
component consists of the integration of the dynamic pressure Rpd and of the static pressure 
Rps. The total pressure integration may also be decomposed into the wave resistance Rw, which 
is the only resistance in a perfect fluid, and the form resistance Rfo. These different components 
of resistance are computed according to the following equations, where RL, Rpd, and Rps, are 
the components of the forces in system x i :  
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Rt = Rf + Rpt, Rpt = Rpd + Rps = RW + Rfo 

Resistance coefficients are calculated according to C x  = 2Rx/@SVa2), where S is the static wetted 
surface. 

Figure 9(a) shows the evolution of the total pressure integration versus time for two Froude 
numbers, Fn = 0.250 and 0.316, for the same initial non-dimensional acceleration a = 1 = Al/- 
Va2, where A is the dimensional acceleration and Va is the speed of the boat. The appearance 
of resistance oscillations after the acceleration slope for both Froude numbers can be noted, but 
the convergence of the resistance is faster for the highest Froude number: the pressure integration 
is converged for T = 5 at Fn = 0.316 and at T = 10 for Fn = 0.250. These oscillations of 
resistance after an acceleration slope may be observed during towing tank tests; moreover, 
Wehausen has studied this phenomenon analytically on a cylinder under the free surface for an 
irrotational flow in a perfect fluid (potential flow). The decomposition of the two first-order 
terms of resistance displays the oscillation of the resistance with a period to according to 
2nVa/gto = f ,  which gives in non-dimensional variables To = 8nFnZ, where To = toVa/Lto This 
formulation of the oscillation period is in good agreement with the calculation presented in 
Figure ya). It is important to note also that the converged values of both resistances are in 
accordance with towing tank experiments. 

It is shown in Figure %a) that the convergence of the solution for high Froude numbers is 
faster than for small Froude numbers; moreover, the free surface elevation is almost converged 
when the pressure integration is still oscillating. Consequently, it is more difficult for a given 
Reynolds number to obtain the steady solution for small Froude numbers, not only because of 
the slower time convergence but also because the capture of the small wavelength on the free 
surface elevation requires a finer free surface grid. Therefore it has been tried to reduce the 
convergence time for small Reynolds number by decreasing the initial acceleration. This figure 
also shows the frictional resistance (for the two Froude numbers we obtain two superposed 
curves). It is noted that this component of the resistance converges faster than the pressure 
integration and does not present oscillations like it. (The coupling of the frictional component 
with the free surface is weak.) The converged value of the frictional resistance is in good 
agreement with the I lTC 57 formula. 

Figure 9(b) shows the result of the pressure integration for two non-dimensional accelerations. 
It can be seen that for the small acceleration (a = 0.4) the first peaks are smaller than for the 
large acceleration (a = 1) but the total convergence duration is the same. 

It has to be noted the good agreement of the pressure integration resistance with experimental 
values in spite of the damping of the free surface first creast, but we can observe the same 
results for the calculation of wave resistance with a potential flow formulation.'.2 Concerning 
the viscous resistance, the calculation is more sensitive to the position of the first point in the 
boundary layer than to the grid size." A finer grid (101 x 41 x 31) with the same body 
concentration gives almost the same numerical results (within 1%). Moreover, the calculation 
of the viscous resistance on the Wigley hull is confirmed by the utilization of a logarithmic law 
for y+ = 100. 
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Figure 9. (a) Pressure integration and frictional I.esistancc at Re = 4-5 x lob. (b) Pressure integration at Re = 4.5 x 10' 

for two accelerations 

5. CONCLUSIONS 

The study which has been presented in this paper should prove the ability of a computer code 
to solve three-dimensional unsteady incompressible Navier-Stokes equations which take into 
account fully non-linear boundary free surface conditions. The software can take into account 
all kinds of hulls which can be meshed by an H-topology in the intersection with the free surface 
and which have a symmetry with the %'Ox3 plane. 

The results obtained for a Wigley hull advancing on initially calm water are satisfactory, 
though the mesh may be too coarse at present to compute all the oscillations of the free surface 
at small Froude numbers. A more complex hull such as a series 60 hull may require a finer grid 
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to obtain converged velocities and pressure field. Some calculations on this model, which present 
strong interactions between the boundary layer and the exterior zone at the stem, will be 
considered. 

Nevertheless, a few critical problems have not be solved up to now. 

1. 

2. 

The modelization of turbulence near the free surface is a problem which has not yet yielded 
entirely satisfactory solutions. 
Obtaining a better solution for velocity profiles near the free surface is certainly linked to 
a better consideration of the dynamic free surface condition, the effects of which are 
important in the boundary layer. 
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